Bcl-2 expression in neural cells blocks activation of ICE/CED-3 family proteases during apoptosis.
نویسندگان
چکیده
The ICE/CED-3 family of proteases has been implicated in playing a fundamental role in programmed cell death. Bcl-2 protein represses a number of apoptotic death programs, but the biochemical mechanism of its action is not known. We investigated the activation of ICE/CED-3 proteases induced by three apoptotic stimuli (staurosporine, ceramide, and serum withdrawal) in the neuronal cell line GT1-7 and in cells overexpressing Bcl-2. Rapid activation of a 17 kDa subunit of an activated member of the ICE/CED-3 family is demonstrated by affinity-labeling GT1-7 extracts from apoptotic controls cells with a biotinylated ICE/CED-3 inhibitor. This activation corresponds to an increased ICE/CED-3-like protease activity in extracts measured by a fluorogenic substrate assay. In a cell-free system, these extracts induce apoptotic morphological changes in intact nuclei. All three activities are readily inhibited by treatment of control extracts with ICE/CED-3-like protease inhibitors. Overexpressed Bcl-2 inhibits the activation of the 17 kDa protein, the ICE/CED-3-like protease activity in the fluorogenic assay, and the induction of apoptotic morphological changes in HeLa nuclei in the cell-free system, similar to results obtained with ICE/CED-3 protease inhibitors. At the mRNA level, overexpression of Bcl-2 did not alter expression of five members of the ICE/CED-3 family: CPP32, ICE, Mch 2, Nedd 2, and TX. Overexpression of Bcl-2 prevented the apoptosis-induced processing of pro-Nedd 2 to the cleaved form. These data suggest that Bcl-2 participates upstream from the function of ICE/CED-3 proteases and may inhibit apoptosis by preventing the post-translational activation of ICE/CED-3 proteases.
منابع مشابه
Type I insulin-like growth factor receptor activation regulates apoptotic proteins.
Activation of the type I insulin-like growth factor receptor (IGF-IR) blocks osmotic mediated programmed cell death (PCD) in neurons. We speculated that IGF-IR activation could afford neuroprotection either by effecting the negative regulators of the death pathway, Bcl-2 and Bcl-xL, or by altering activity of the ced-3/ICE-like proteases. Here we report that osmotic stress decreases total neuro...
متن کاملRole of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death
In the accompanying paper by Weil et al. (1996) we show that staurosporine (STS), in the presence of cycloheximide (CHX) to inhibit protein synthesis, induces apoptotic cell death in a large variety of nucleated mammalian cell types, suggesting that all nucleated mammalian cells constitutively express all of the proteins required to undergo programmed cell death (PCD). The reliability of that c...
متن کاملBcl-2 regulates activation of apoptotic proteases in a cell-free system
BACKGROUND Apoptosis plays an important role in the normal development and homeostasis of metazoans. Aberrations in this process have been implicated in several major human diseases, but its molecular mechanism is poorly understood. In animals as diverse as humans and nematodes, the Bcl-2 oncoprotein prevents or delays apoptosis, whereas proteases of the interleukin-1beta-converting enzyme (ICE...
متن کاملInvolvement of CED-3/ICE proteases in the apoptosis of B-chronic lymphocytic leukemia cells.
B-chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived B lymphocytes that express high levels of Bcl-2. We examined the involvement of CED-3/ICE-like proteases in the apoptosis of B-CLL cells. One of the substrates of these proteases is poly(ADP [adenosine 5'-diphosphate]-ribose) polymerase (PARP). The effect of different factors that induce the apoptosis of B...
متن کاملInhibition of Ced-3/ICE-related Proteases Does Not Prevent Cell Death Induced by Oncogenes, DNA Damage, or the Bcl-2 Homologue Bak
There is increasing evidence for a central role in mammalian apoptosis of the interleukin-1 beta-converting enzyme (ICE) family of cysteine proteases, homologues of the product of the nematode "death" gene, ced-3. Ced-3 is thought to act as an executor rather than a regulator of programmed cell death in the nematode. However, it is not known whether mammalian ICE-related proteases (IRPs) are in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 18 شماره
صفحات -
تاریخ انتشار 1996